A123 Systems Introduces Nanophosphate EXT

A123 Systems introduced this month Nanophosphate EXT, a new lithium ion battery technology capable of operating at extreme temperatures without requiring thermal management.

Nanophosphate EXT is designed to significantly reduce or eliminate the need for heating or cooling systems, which is expected to create sizeable new opportunities within the transportation and telecommunications markets, among others.

“We believe Nanophosphate EXT is a game-changing breakthrough that overcomes one of the key limitations of lead acid, standard lithium ion and other advanced batteries. By delivering high power, energy and cycle life capabilities over a wider temperature range, we believe Nanophosphate EXT can reduce or even eliminate the need for costly thermal management systems, which we expect will dramatically enhance the business case for deploying A123’s lithium ion battery solutions for a significant number of applications,” said David Vieau, CEO of A123 Systems. “We continue to emphasize innovation with a commercial purpose, and we expect Nanophosphate EXT to strengthen our competitive position in existing target markets as well as create new opportunities for applications that previously were not possible to cost-effectively serve with lithium ion batteries.”

Unlike lead acid or other advanced battery technologies, Nanophosphate EXT is designed to maintain long cycle life at extreme high temperatures and deliver high power at extreme low temperatures. According to the testing performed to date at the Ohio State University’s Center for Automotive Research (CAR) and the very low observed rate of aging, cells built with A123’s Nanophosphate EXT are expected to be capable of retaining more than 90 percent of initial capacity after 2,000 full charge-discharge cycles at 45 degrees Celsius. CAR has also starting testing the cold temperature performance of Nanophosphate EXT, which A123 expects will deliver a 20 percent increase in power at temperatures as low as minus 30 degrees Celsius.

“Based on our analysis, the performance of A123’s new Nanophosphate EXT at high temperatures is unlike anything we’ve ever seen from lead acid, lithium ion or any other battery technology,” said Dr. Yann Guezennec, senior fellow at CAR and professor of mechanical engineering at the Ohio State University. “Nanophosphate EXT maintains impressive cycle life even at extreme high temperatures without sacrificing storage or energy capabilities, especially as compared with the competitive leading lithium ion technology that we used on our head-to-head testing. If our testing also validates the low-temperature power capabilities that A123’s data is showing, we believe Nanophosphate EXT could be a game-changing battery breakthrough for the electrification of transportation, including the emerging micro hybrid vehicle segment.”

Nanophosphate EXT is based on A123’s proprietary lithium iron phosphate battery technology, which offers high power, long cycle life, increased usable energy and excellent safety as compared to other available battery technologies. Nanophosphate EXT is designed to extend these capabilities over a wider temperature range, enabling customers to deploy more advanced solutions that increase performance in applications that frequently experience battery cycling at extreme temperatures. Because Nanophosphate EXT is designed to reduce or eliminate the need for costly thermal management, it is expected to deliver these performance advantages while also increasing reliability, minimizing complexity and reducing total cost of ownership (TCO) over the life of the battery system for a number of applications, including those within the transportation and telecommunications industries.

For the transportation industry, Nanophosphate EXT is designed to augment the performance advantages of A123’s solutions for electric and micro hybrid commercial and passenger vehicles. By enabling increased power at low temperatures, Nanophosphate EXT is expected to substantially improve the cold-cranking capabilities of A123’s lithium ion 12V Engine Start battery. This would eliminate what has historically been the only performance advantage of lead acid in starter battery applications, and is expected to considerably increase the value proposition of A123’s Engine Start battery as a lighter-weight, longer-lasting alternative to absorbent glass mat (AGM) and other lead acid batteries. This is expected to reduce TCO for micro hybrid applications, which represents a growing subset of the global electric vehicle market.

In addition, Nanophosphate EXT is expected to enable automakers to significantly reduce or completely eliminate active cooling systems in electric vehicle battery packs. A123 expects this to lower cost, reduce weight and improve reliability, providing automakers with a cost-effective solution that A123 believes will increases efficiency and minimize system complexity without sacrificing vehicle performance, battery life or driving range.

A123’s Nanophosphate EXT technology is scheduled to enter volume production in A123’s 20Ah prismatic cells during the first half of 2013. A123 is also evaluating plans to potentially offer Nanophosphate EXT across its complete portfolio of cell products


  • Van

    What happened to the Hybrid Car’s rule of not posting new battery blurbs without including cost per kwh and specific energy (Wh/kg)?

  • shecky vegas

    This is mainly a PR piece. A123 is having to get as many notices out as quickly as possible because their stock is going into the shitter.

  • John K.

    I wonder if Wash State U’s tin anode Li ion battery technology would be compatible w/this? If so, that would be a tough act to follow: wide temp range, more and faster recharges AND 3x the energy storage! That would be a real “game changer.”

    Link to info re WSU’s Sn anode tech:
    http://news.wsu.edu/pages/publications.asp?Action=Detail&PublicationID=31776&TypeID=1

  • icetears

    great issues altogether, you just accustomed cast new reader.aventura What could you acclaim in commendations to your column that you just fabricated some canicule in the past? Any positive?
    jogos online